8 research outputs found

    Strong inapproximability of the shortest reset word

    Full text link
    The \v{C}ern\'y conjecture states that every nn-state synchronizing automaton has a reset word of length at most (n1)2(n-1)^2. We study the hardness of finding short reset words. It is known that the exact version of the problem, i.e., finding the shortest reset word, is NP-hard and coNP-hard, and complete for the DP class, and that approximating the length of the shortest reset word within a factor of O(logn)O(\log n) is NP-hard [Gerbush and Heeringa, CIAA'10], even for the binary alphabet [Berlinkov, DLT'13]. We significantly improve on these results by showing that, for every ϵ>0\epsilon>0, it is NP-hard to approximate the length of the shortest reset word within a factor of n1ϵn^{1-\epsilon}. This is essentially tight since a simple O(n)O(n)-approximation algorithm exists.Comment: extended abstract to appear in MFCS 201

    Synchronizing Random Almost-Group Automata

    Full text link
    In this paper we address the question of synchronizing random automata in the critical settings of almost-group automata. Group automata are automata where all letters act as permutations on the set of states, and they are not synchronizing (unless they have one state). In almost-group automata, one of the letters acts as a permutation on n1n-1 states, and the others as permutations. We prove that this small change is enough for automata to become synchronizing with high probability. More precisely, we establish that the probability that a strongly connected almost-group automaton is not synchronizing is 2k11n2(k1)(1+o(1))\frac{2^{k-1}-1}{n^{2(k-1)}}(1+o(1)), for a kk-letter alphabet.Comment: full version prepared for CIAA 201

    Algebraic synchronization criterion and computing reset words

    Full text link
    We refine a uniform algebraic approach for deriving upper bounds on reset thresholds of synchronizing automata. We express the condition that an automaton is synchronizing in terms of linear algebra, and obtain upper bounds for the reset thresholds of automata with a short word of a small rank. The results are applied to make several improvements in the area. We improve the best general upper bound for reset thresholds of finite prefix codes (Huffman codes): we show that an nn-state synchronizing decoder has a reset word of length at most O(nlog3n)O(n \log^3 n). In addition to that, we prove that the expected reset threshold of a uniformly random synchronizing binary nn-state decoder is at most O(nlogn)O(n \log n). We also show that for any non-unary alphabet there exist decoders whose reset threshold is in Θ(n)\varTheta(n). We prove the \v{C}ern\'{y} conjecture for nn-state automata with a letter of rank at most 6n63\sqrt[3]{6n-6}. In another corollary, based on the recent results of Nicaud, we show that the probability that the \v{C}ern\'y conjecture does not hold for a random synchronizing binary automaton is exponentially small in terms of the number of states, and also that the expected value of the reset threshold of an nn-state random synchronizing binary automaton is at most n3/2+o(1)n^{3/2+o(1)}. Moreover, reset words of lengths within all of our bounds are computable in polynomial time. We present suitable algorithms for this task for various classes of automata, such as (quasi-)one-cluster and (quasi-)Eulerian automata, for which our results can be applied.Comment: 18 pages, 2 figure

    Synchronization Problems in Automata without Non-trivial Cycles

    Full text link
    We study the computational complexity of various problems related to synchronization of weakly acyclic automata, a subclass of widely studied aperiodic automata. We provide upper and lower bounds on the length of a shortest word synchronizing a weakly acyclic automaton or, more generally, a subset of its states, and show that the problem of approximating this length is hard. We investigate the complexity of finding a synchronizing set of states of maximum size. We also show inapproximability of the problem of computing the rank of a subset of states in a binary weakly acyclic automaton and prove that several problems related to recognizing a synchronizing subset of states in such automata are NP-complete.Comment: Extended and corrected version, including arXiv:1608.00889. Conference version was published at CIAA 2017, LNCS vol. 10329, pages 188-200, 201

    Checking Whether an Automaton Is Monotonic Is NP-complete

    Full text link
    An automaton is monotonic if its states can be arranged in a linear order that is preserved by the action of every letter. We prove that the problem of deciding whether a given automaton is monotonic is NP-complete. The same result is obtained for oriented automata, whose states can be arranged in a cyclic order. Moreover, both problems remain hard under the restriction to binary input alphabets.Comment: 13 pages, 4 figures. CIAA 2015. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22360-5_2

    Words of Minimum Rank in Deterministic Finite Automata

    No full text
    International audienceThe rank of a word in a deterministic finite automaton is the size of the image of the whole state set under the mapping defined by this word. We study the length of shortest words of minimum rank in several classes of complete deterministic finite automata, namely, strongly connected and Eulerian automata. A conjecture bounding this length is known as the Rank Conjecture, a generalization of the well known Černý Conjecture. We prove upper bounds on the length of shortest words of minimum rank in automata from the mentioned classes, and provide several families of automata with long words of minimum rank. Some results in this direction are also obtained for automata with rank equal to period (the greatest common divisor of lengths of all cycles) and for circular automata
    corecore